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Amplitude—The magnitude or strength of a varying
waveform. 〈1010〉 ANALYTICAL DATA—

Average Signal Level (ASL)—A measure of the average
power in an acoustic emission signal. INTERPRETATION AND

Band-Pass—The range of frequencies within which a
component operates. TREATMENT

Compressional Mode—A longitudinal mode of acoustic
transmission encountered in solids, liquids, and gases.

Continuous Acoustic Emission—Acoustic emission signals
that cannot be separated in time and are typical of pharma-
ceutical processes such as granulation and fluid bed drying. INTRODUCTION

Flicker Type Properties—A type of signal associated with
many natural processes. The characteristics of flicker noise This chapter provides information regarding acceptable
are that the power of the noise is directly proportional to practices for the analysis and consistent interpretation of
the signal and has approximately a 1/f (f = frequency) spec- data obtained from chemical and other analyses. Basic sta-
tral density distribution. tistical approaches for evaluating data are described, and

Gain—The amplification factor for a component usually the treatment of outliers and comparison of analytical meth-
expressed in terms of decibels (dB). ods are discussed in some detail.

Gain in dB = 20 log10 (Voltageout Voltagein). NOTE—It should not be inferred that the analysis
Nyquist Frequency—The Nyquist frequency is defined as tools mentioned in this chapter form an exhaustive list.

half the digital sampling rate and is the highest frequency Other, equally valid, statistical methods may be used at
that can be reproduced faithfully. the discretion of the manufacturer and other users of

Piezoelectric—A material which generates an electric field this chapter.
when compressed. Piezoelectric materials are used in the Assurance of the quality of pharmaceuticals is accom-
construction of acoustic emission sensors. A common mate- plished by combining a number of practices, including ro-
rial is PZT (lead zirconium titanate). bust formulation design, validation, testing of starting

Power Spectrum—A power spectrum of a signal is a rep- materials, in-process testing, and final-product testing. Each
resentation of the signal power as a function of frequency. A of these practices is dependent on reliable test methods. In
power spectrum is calculated from the time domain signal the development process, test procedures are developed
by means of the Fast Fourier Transform (FFT) algorithm. It is and validated to ensure that the manufactured products are
useful to study acoustic emission signals in the frequency or thoroughly characterized. Final-product testing provides fur-
spectral domain, as the spectrum is often characteristic of ther assurance that the products are consistently safe, effica-
the mechanism. Improvements in signal-to-noise ratio can cious, and in compliance with their specifications.
be obtained by averaging a number of power spectra, as Measurements are inherently variable. The variability of bi-
they are coherent. ological tests has long been recognized by the USP. For ex-

Power Spectral Density—The measure of acoustic emis- ample, the need to consider this variability when analyzing
sion power in each resolution element of the power biological test data is addressed under Design and Analysis of
spectrum. Biological Assays 〈111〉. The chemical analysis measurements

Resonance Frequency—The frequency at which an commonly used to analyze pharmaceuticals are also inher-
acoustic emission sensor is most sensitive. Resonant acoustic ently variable, although less so than those of the biological
emission sensors have a clearly defined resonance frequency, tests. However, in many instances the acceptance criteria
but are usually sensitive to other frequencies. are proportionally tighter, and thus, this smaller allowable

RMS-to-DC Converter—An electronic device that con- variability has to be considered when analyzing data gener-
verts an alternating signal to a voltage level proportional to ated using analytical procedures. If the variability of a meas-
the average power in the signal. urement is not characterized and stated along with the re-

Shear Mode—A transverse mode of acoustic transmission, sult of the measurement, then the data can only be
encountered only in solids. interpreted in the most limited sense. For example, stating

Signal Filtering—Filtering a signal means attenuating fre- that the difference between the averages from two laborato-
quencies outside a prescribed range. In acoustic emission ries when testing a common set of samples is 10% has lim-
work, band-pass filtering is used to improve the signal-to- ited interpretation, in terms of how important such a differ-
noise ratio by attenuating noise outside the bandwidth of ence is, without knowledge of the intralaboratory variability.
the sensor. Low-pass filtering is used to remove frequencies This chapter provides direction for scientifically acceptable
higher than the Nyquist frequency in order to prevent treatment and interpretation of data. Statistical tools that
aliasing. may be helpful in the interpretation of analytical data are

Transverse Mode—A mode of wave propagation where described. Many descriptive statistics, such as the mean and
the displacement of the material is perpendicular to the di- standard deviation, are in common use. Other statistical
rection of propagation. These modes are only encountered tools, such as outlier tests, can be performed using several
in solid materials. different, scientifically valid approaches, and examples of

White Noise—The characteristic of white noise is a power these tools and their applications are also included. The
spectrum of uniform spectral density and is associated with framework within which the results from a compendial test
purely random processes. are interpreted is clearly outlined in Test Results, Statistics,

and Standards under General Notices and Requirements. Se-
lected references that might be helpful in obtaining addi-
tional information on the statistical tools discussed in this
chapter are listed in Appendix F at the end of the chapter.
USP does not endorse these citations, and they do not rep-
resent an exhaustive list. Further information about many of
the methods cited in this chapter may also be found in
most statistical textbooks.
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measurement processes. Once the sampling scheme hasPREREQUISITE LABORATORY PRACTICES
been defined, it is likely that the sampling will include someAND PRINCIPLES element of random selection. Finally, there must be suffi-
cient sample collected for the original analysis, subsequentThe sound application of statistical principles to laboratory verification analyses, and other analyses. Consulting a statis-data requires the assumption that such data have been col- tician to identify the optimal sampling strategy islected in a traceable (i.e., documented) and unbiased man- recommended.ner. To ensure this, the following practices are beneficial. Tests discussed in the remainder of this chapter assume
that simple random sampling has been performed.

Sound Record Keeping
Use of Reference StandardsLaboratory records are maintained with sufficient detail,

so that other equally qualified analysts can reconstruct the Where the use of the USP Reference Standard is specified,experimental conditions and review the results obtained. the USP Reference Standard, or a secondary standard tracea-When collecting data, the data should generally be obtained ble to the USP Reference Standard, is used. Because thewith more decimal places than the specification requires assignment of a value to a standard is one of the mostand rounded only after final calculations are completed as important factors that influences the accuracy of an analysis,per the General Notices and Requirements. it is critical that this be done correctly.

Sampling Considerations System Performance Verification
Effective sampling is an important step in the assessment Verifying an acceptable level of performance for an analyt-of a quality attribute of a population. The purpose of sam- ical system in routine or continuous use can be a valuablepling is to provide representative data (the sample) for esti- practice. This may be accomplished by analyzing a controlmating the properties of the population. How to attain such sample at appropriate intervals, or using other means, sucha sample depends entirely on the question that is to be as, variation among the standards, background signal-to-answered by the sample data. In general, use of a random noise ratios, etc. Attention to the measured parameter, suchprocess is considered the most appropriate way of selecting as charting the results obtained by analysis of a control sam-a sample. Indeed, a random and independent sample is ple, can signal a change in performance that requires ad-necessary to ensure that the resulting data produce valid justment of the analytical system. An example of a con-estimates of the properties of the population. Generating a trolled chart is provided in Appendix A.nonrandom or “convenience” sample risks the possibility

that the estimates will be biased. The most straightforward
type of random sampling is called simple random sampling, a Method Validation
process in which every unit of the population has an equal
chance of appearing in the sample. However, sometimes All methods are appropriately validated as specified under
this method of selecting a random sample is not optimal Validation of Compendial Procedures 〈1225〉. Methods pub-
because it cannot guarantee equal representation among lished in the USP–NF have been validated and meet the Cur-
factors (i.e., time, location, machine) that may influence the rent Good Manufacturing Practices regulatory requirement
critical properties of the population. For example, if it re- for validation as established in the Code of Federal Regula-
quires 12 hours to manufacture all of the units in a lot and tions. A validated method may be used to test a new formu-
it is vital that the sample be representative of the entire lation (such as a new product, dosage form, or process in-
production process, then taking a simple random sample termediate) only after confirming that the new formulation
after the production has been completed may not be appro- does not interfere with the accuracy, linearity, or precision
priate because there can be no guarantee that such a sam- of the method. It may not be assumed that a validated
ple will contain a similar number of units made from every method could correctly measure the active ingredient in a
time period within the 12-hour process. Instead, it is better formulation that is different from that used in establishing
to take a systematic random sample whereby a unit is ran- the original validity of the method. [NOTE on terminology—
domly selected from the production process at systemati- The definition of accuracy in Validation of Compendial Proce-
cally selected times or locations (e.g., sampling every 30 dures 〈1225〉 and in ICH Q2 corresponds to unbiasedness
minutes from the units produced at that time) to ensure only. In the International Vocabulary of Metrology (VIM)
that units taken throughout the entire manufacturing pro- and documents of the International Organization for Stan-
cess are included in the sample. Another type of random dardization (ISO), accuracy has a different meaning. In ISO,
sampling procedure is needed if, for example, a product is accuracy combines the concepts of unbiasedness (termed
filled into vials using four different filling machines. In this trueness) and precision. This chapter follows the definition in
case it would be important to capture a random sample of chapter 〈1225〉, which corresponds only to trueness.]
vials from each of the filling machines. A stratified random
sample, which randomly samples an equal number of vials
from each of the four filling machines, would satisfy this MEASUREMENT PRINCIPLES AND VARIATION
requirement. Regardless of the reason for taking a sample
(e.g., batch-release testing), a sampling plan should be es- All measurements are, at best, estimates of the actual
tablished to provide details on how the sample is to be (“true” or “accepted”) value for they contain random varia-
obtained to ensure that the sample is representative of the bility (also referred to as random error) and may also con-
entirety of the population and that the resulting data have tain systematic variation (bias). Thus, the measured value
the required sensitivity. The optimal sampling strategy will differs from the actual value because of variability inherent
depend on knowledge of the manufacturing and analytical
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in the measurement. If an array of measurements consists of Method variability can be estimated in various ways. The
individual results that are representative of the whole, statis- most common and useful assessment of a method’s variabil-
tical methods can be used to estimate informative properties ity is the determination of the standard deviation based on
of the entirety, and statistical tests are available to investi- repeated independent1  measurements of a sample. The
gate whether it is likely that these properties comply with sample standard deviation, s, is calculated by the formula: 
given requirements. The resulting statistical analyses should
address the variability associated with the measurement pro-
cess as well as that of the entity being measured. Statistical
measures used to assess the direction and magnitude of
these errors include the mean, standard deviation, and ex-
pressions derived therefrom, such as the percent coefficient in which xI is the individual measurement in a set of n
of variation (%CV, also called the percent relative standard measurements; and x is the mean of all the measurements.
deviation, %RSD). The estimated variability can be used to The percent relative standard deviation (%RSD) is then cal-
calculate confidence intervals for the mean, or measures of culated as:
variability, and tolerance intervals capturing a specified pro-
portion of the individual measurements.

The use of statistical measures must be tempered with
good judgment, especially with regard to representative
sampling. Data should be consistent with the statistical as- and expressed as a percentage. If the data requires log
sumptions used for the analysis. If one or more of these transformation to achieve normality (e.g., for biological as-
assumptions appear to be violated, alternative methods may says), then alternative methods are available.2
be required in the evaluation of the data. In particular, most A precision study should be conducted to provide a better
of the statistical measures and tests cited in this chapter rely estimate of method variability. The precision study may be
on the assumptions that the distribution of the entire popu- designed to determine intermediate precision (which in-
lation is represented by a normal distribution and that the cludes the components of both “between run” and “within-
analyzed sample is a representative subset of this popula- run” variability) and repeatability (“within-run” variability).
tion. The normal (or Gaussian) distribution is bell-shaped The intermediate precision studies should allow for changes
and symmetric about its center and has certain characteris- in the experimental conditions that might be expected,
tics that are required for these tests to be valid. The data such as different analysts, different preparations of reagents,
may not always be expected to be normally distributed and different days, and different instruments. To perform a preci-
may require a transformation to better fit a normal distribu- sion study, the test is repeated several times. Each run must
tion. For example, there exist variables that have distribu- be completely independent of the others to provide accu-
tions with longer right tails than left. Such distributions can rate estimates of the various components of variability. In
often be made approximately normal through a log trans- addition, within each run, replicates are made in order to
formation. An alternative approach would be to use “distri- estimate repeatability. See an example of a precision study
bution-free” or “nonparametric” statistical procedures that under Appendix B.
do not require that the shape of the population be that of a A confidence interval for the mean may be considered in
normal distribution. When the objective is to construct a the interpretation of data. Such intervals are calculated from
confidence interval for the mean or for the difference be- several data points using the sample mean (x) and sample
tween two means, for example, then the normality assump- standard deviation(s) according to the formula:
tion is not as important because of the central limit theo-
rem. However, one must verify normality of data to
construct valid confidence intervals for standard deviations
and ratios of standard deviations, perform some outlier
tests, and construct valid statistical tolerance limits. In the
latter case, normality is a critical assumption. Simple graphi- in which tα/2,n–1 is a statistical number dependent upon the
cal methods, such as dot plots, histograms, and normal sample size (n), the number of degrees of freedom (n – 1),
probability plots, are useful aids for investigating this and the desired confidence level (1 – α). Its values are ob-
assumption. tained from published tables of the Student t-distribution.

A single analytical measurement may be useful in quality The confidence interval provides an estimate of the range
assessment if the sample is from a whole that has been within which the “true” population mean (µ) falls, and it
prepared using a well-validated, documented process and if also evaluates the reliability of the sample mean as an esti-
the analytical errors are well known. The obtained analytical mate of the true mean. If the same experimental set-up
result may be qualified by including an estimate of the asso- were to be replicated over and over and a 95% (for exam-
ciated errors. There may be instances when one might con- ple) confidence interval for the true mean is calculated each
sider the use of averaging because the variability associated time, then 95% of such intervals would be expected to con-
with an average value is always reduced as compared to the tain the true mean, µ. One cannot say with certainty
variability in the individual measurements. The choice of whether or not the confidence interval derived from a spe-
whether to use individual measurements or averages will de-

1 Multiple measurements (or, equivalently, the experimental errors associatedpend upon the use of the measure and its variability. For with the multiple measurements) are independent from one another whenexample, when multiple measurements are obtained on the they can be assumed to represent a random sample from the population. In
same sample aliquot, such as from multiple injections of the such a sample, the magnitude of one measurement is not influenced by, nor

does it influence the magnitude of, any other measurement. Lack of indepen-sample in an HPLC method, it is generally advisable to aver-
dence implies the measurements are correlated over time or space. Considerage the resulting data for the reason discussed above. the example of a 96-well microtiter plate. Suppose that whenever the un-

Variability is associated with the dispersion of observations known causes that produce experimental error lead to a low result (negative
error) when a sample is placed in the first column and these same causesaround the center of a distribution. The most commonly
would also lead to a low result for a sample placed in the second column,used statistic to measure the center is the sample mean (x): then the two resulting measurements would not be statistically independent.
One way to avoid such possibilities would be to randomize the placement of
the samples on the plate.
2 When data have been log (base e) transformed to achieve normality, the
%RSD is:

 This can be reasonably approximated by:

where s is the standard deviation of the log (base e) transformed data.
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cific set of data actually collected contains µ. However, as- tests (e.g., the ESD Test) require the assumption that the
suming the data represent mutually independent measure- data generated by the laboratory on the test results can be
ments randomly generated from a normally distributed thought of as a random sample from a population that is
population, the procedure used to construct the confidence normally distributed, possibly after transformation. If a trans-
interval guarantees that 95% of such confidence intervals formation is made to the data, the outlier test is applied to
contain µ. Note that it is important to define the population the transformed data. Common transformations include tak-
appropriately so that all relevant sources of variation are ing the logarithm or square root of the data. Other ap-
captured. [NOTE on terminology—In the documents of the proaches to handling single and multiple outliers are availa-
International Organization for Standardization (ISO), differ- ble and can also be used. These include tests that use
ent terminology is used for some of the concepts described robust measures of central tendency and spread, such as the
here. The term s/√n, which is commonly called the standard median and median absolute deviation and exploratory data
error of the mean, is called the standard uncertainty in ISO analysis (EDA) methods. “Outlier accommodation” is the use
documents. The term tα/2,n−1 S/√n is called the expanded of robust techniques, such as tests based on the order or
uncertainty, and tα/2,n− 1 is called the coverage factor, by ISO. rank of each data value in the data set instead of the actual
If the standard deviation is found by combining estimates of data value, to produce results that are not adversely influ-
variability from multiple sources, it is called the combined enced by the presence of outliers. The use of such methods
standard uncertainty. Some of these sources could have reduces the risks associated with both types of error in the
nonstatistical estimates of uncertainty, called Type B uncer- identification of outliers.
tainties, such as uncertainty in calibration of a balance.] “Outlier rejection” is the actual removal of the identified

outlier from the data set. However, an outlier test cannot be
the sole means for removing an outlying result from the

OUTLYING RESULTS laboratory data. An outlier test may be useful as part of the
evaluation of the significance of that result, along with other

Occasionally, observed analytical results are very different data. Outlier tests have no applicability in cases where the
from those expected. Aberrant, anomalous, contaminated, variability in the product is what is being assessed, such as
discordant, spurious, suspicious or wild observations; and content uniformity, dissolution, or release-rate determina-
flyers, rogues, and mavericks are properly called outlying re- tion. In these applications, a value determined to be an out-
sults. Like all laboratory results, these outliers must be docu- lier may in fact be an accurate result of a nonuniform prod-
mented, interpreted, and managed. Such results may be ac- uct. All data, especially outliers, should be kept for future
curate measurements of the entity being measured, but are review. Unusual data, when seen in the context of other
very different from what is expected. Alternatively, due to historical data, are often not unusual after all but reflect the
an error in the analytical system, the results may not be influences of additional sources of variation.
typical, even though the entity being measured is typical. In summary, the rejection or retention of an apparent
When an outlying result is obtained, systematic laboratory outlier can be a serious source of bias. The nature of the
and process investigations of the result are conducted to testing as well as scientific understanding of the manufactur-
determine if an assignable cause for the result can be estab- ing process and analytical method have to be considered to
lished. Factors to be considered when investigating an out- determine the source of the apparent outlier. An outlier test
lying result include—but are not limited to—human error, can never take the place of a thorough laboratory investiga-
instrumentation error, calculation error, and product or tion. Rather, it is performed only when the investigation is
component deficiency. If an assignable cause that is not re- inconclusive and no deviations in the manufacture or testing
lated to a product or component deficiency can be identi- of the product were noted. Even if such statistical tests indi-
fied, then retesting may be performed on the same sample, cate that one or more values are outliers, they should still
if possible, or on a new sample. The precision and accuracy be retained in the record. Including or excluding outliers in
of the method, the Reference Standard, process trends, and calculations to assess conformance to acceptance criteria
the specification limits should all be examined. Data may be should be based on scientific judgment and the internal pol-
invalidated, based on this documented investigation, and icies of the manufacturer. It is often useful to perform the
eliminated from subsequent calculations. calculations with and without the outliers to evaluate their

If no documentable, assignable cause for the outlying lab- impact.
oratory result is found, the result may be tested, as part of Outliers that are attributed to measurement process mis-
the overall investigation, to determine whether it is an takes should be reported (i.e., footnoted), but not included
outlier. in further statistical calculations. When assessing conform-

However, careful consideration is warranted when using ance to a particular acceptance criterion, it is important to
these tests. Two types of errors may occur with outlier tests: define whether the reportable result (the result that is com-
(a) labeling observations as outliers when they really are pared to the limits) is an average value, an individual meas-
not; and (b) failing to identify outliers when they truly exist. urement, or something else. If, for example, the acceptance
Any judgment about the acceptability of data in which out- criterion was derived for an average, then it would not be
liers are observed requires careful interpretation. statistically appropriate to require individual measurements

“Outlier labeling” is informal recognition of suspicious lab- to also satisfy the criterion because the variability associated
oratory values that should be further investigated with more with the average of a series of measurements is smaller than
formal methods. The selection of the correct outlier identifi- that of any individual measurement.
cation technique often depends on the initial recognition of
the number and location of the values. Outlier labeling is
most often done visually with graphical techniques. “Outlier COMPARISON OF ANALYTICAL METHODS
identification” is the use of statistical significance tests to
confirm that the values are inconsistent with the known or It is often necessary to compare two methods to deter-
assumed statistical model. mine if their average results or their variabilities differ by an

When used appropriately, outlier tests are valuable tools amount that is deemed important. The goal of a method
for pharmaceutical laboratories. Several tests exist for de- comparison experiment is to generate adequate data to
tecting outliers. Examples illustrating three of these proce- evaluate the equivalency of the two methods over a range
dures, the Extreme Studentized Deviate (ESD) Test, Dixon’s of concentrations. Some of the considerations to be made
Test, and Hampel’s Rule, are presented in Appendix C. when performing such comparisons are discussed in this

Choosing the appropriate outlier test will depend on the section.
sample size and distributional assumptions. Many of these
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if the confidence interval excludes zero. A statistically signifi-Precision
cant difference may not be large enough to have practical
importance to the laboratory because it may have arisen asPrecision is the degree of agreement among individual
a result of highly precise data or a larger sample size. Ontest results when the analytical method is applied repeatedly
the other hand, it is possible that no statistically significantto a homogeneous sample. For an alternative method to be
difference is found, which happens when the confidence in-considered to have “comparable” precision to that of a cur-
terval includes zero, and yet an important practical differ-rent method, its precision (see Analytical Performance Char-
ence cannot be ruled out. This might occur, for example, ifacteristics under Validation of Compendial Procedures 〈1225〉)
the data are highly variable or the sample size is too small.must not be worse than that of the current method by an
Thus, while the outcome of the t-test indicates whether oramount deemed important. A decrease in precision (or in-
not a statistically significant difference has been observed, itcrease in variability) can lead to an increase in the number
is not informative with regard to the presence or absence ofof results expected to fail required specifications. On the
a difference of practical importance.other hand, an alternative method providing improved pre-

cision is acceptable.
One way of comparing the precision of two methods is Determination of Sample Sizeby estimating the variance for each method (the sample va-

riance, s2, is the square of the sample standard deviation) Sample size determination is based on the comparison ofand calculating a one-sided upper confidence interval for the accuracy and precision of the two methods3 and is simi-the ratio of (true) variances, where the ratio is defined as lar to that for testing hypotheses about average differencesthe variance of the alternative method to that of the current in the former case and variance ratios in the latter case, butmethod. An example, with this assumption, is outlined the meaning of some of the input is different. The first com-under Appendix D. The one-sided upper confidence limit ponent to be specified is δ, the largest acceptable differenceshould be compared to an upper limit deemed acceptable, between the two methods that, if achieved, still leads to thea priori, by the analytical laboratory. If the one-sided upper conclusion of equivalence. That is, if the two methods differconfidence limit is less than this upper acceptable limit, then by no more than δ, on the average, they are consideredthe precision of the alternative method is considered accept- acceptably similar. The comparison can be two-sided as justable in the sense that the use of the alternative method will expressed, considering a difference of δ in either direction,not lead to an important loss in precision. Note that if the as would be used when comparing means. Alternatively, itone-sided upper confidence limit is less than one, then the can be one-sided as in the case of comparing variancesalternative method has been shown to have improved preci- where a decrease in variability is acceptable and equivalencysion relative to the current method. is concluded if the ratio of the variances (new/current, as aThe confidence interval method just described is preferred proportion) is not more than 1.0 + δ. A researcher will needto applying the two-sample F-test to test the statistical sig- to state δ based on knowledge of the current method and/nificance of the ratio of variances. To perform the two-sam- or its use, or it may be calculated. One consideration, whenple F-test, the calculated ratio of sample variances would be there are specifications to satisfy, is that the new methodcompared to a critical value based on tabulated values of should not differ by so much from the current method as tothe F distribution for the desired level of confidence and the risk generating out-of-specification results. One then choosesnumber of degrees of freedom for each variance. Tables δ to have a low likelihood of this happening by, for exam-providing F-values are available in most standard statistical ple, comparing the distribution of data for the currenttextbooks. If the calculated ratio exceeds this critical value, a method to the specification limits. This could be donestatistically significant difference in precision is said to exist graphically or by using a tolerance interval, an example ofbetween the two methods. However, if the calculated ratio which is given in Appendix E. In general, the choice for δis less than the critical value, this does not prove that the must depend on the scientific requirements of themethods have the same or equivalent level of precision; but laboratory.rather that there was not enough evidence to prove that a The next two components relate to the probability of er-statistically significant difference did, in fact, exist. ror. The data could lead to a conclusion of similarity when
the methods are unacceptably different (as defined by δ).
This is called a false positive or Type I error. The error couldAccuracy
also be in the other direction; that is, the methods could be
similar, but the data do not permit that conclusion. This is aComparison of the accuracy (see Analytical Performance
false negative or Type II error. With statistical methods, it isCharacteristics under Validation of Compendial Procedures
not possible to completely eliminate the possibility of either〈1225〉) of methods provides information useful in determin-
error. However, by choosing the sample size appropriately,ing if the new method is equivalent, on the average, to the
the probability of each of these errors can be made accepta-current method. A simple method for making this compari-
bly small. The acceptable maximum probability of a Type Ison is by calculating a confidence interval for the difference
error is commonly denoted as α and is commonly taken asin true means, where the difference is estimated by the
5%, but may be chosen differently. The desired maximumsample mean of the alternative method minus that of the
probability of a Type II error is commonly denoted by β.current method.
Often, β is specified indirectly by choosing a desired level ofThe confidence interval should be compared to a lower
1 – β, which is called the “power” of the test. In the con-and upper range deemed acceptable, a priori, by the labora-
text of equivalency testing, power is the probability of cor-tory. If the confidence interval falls entirely within this ac-
rectly concluding that two methods are equivalent. Power isceptable range, then the two methods can be considered
commonly taken to be 80% or 90% (corresponding to a βequivalent, in the sense that the average difference between
of 20% or 10%), though other values may be chosen. Thethem is not of practical concern. The lower and upper limits
protocol for the experiment should specify δ, α, and power.of the confidence interval only show how large the true
The sample size will depend on all of these components. Andifference between the two methods may be, not whether
example is given in  Appendix E. Although  Appendix E deter-this difference is considered tolerable. Such an assessment
mines only a single value, it is often useful to determine acan be made only within the appropriate scientific context.
table of sample sizes corresponding to different choices of δ,The confidence interval method just described is preferred
α, and power. Such a table often allows for a more in-to the practice of applying a t-test to test the statistical sig-
formed choice of sample size to better balance the compet-nificance of the difference in averages. One way to perform

the t-test is to calculate the confidence interval and to ex- 3 In general, the sample size required to compare the precision of two meth-
amine whether or not it contains the value zero. The two ods will be greater than that required to compare the accuracy of the meth-

ods.methods have a statistically significant difference in averages
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ing priorities of resources and risks (false negative and false there were an equal number of replicates per run in the
positive conclusions). precision study, values for VarianceRun and VarianceRep can be

derived from the ANOVA table in a straightforward manner.
The equations below calculate the variability associated with

APPENDIX A: CONTROL CHARTS both the runs and the replicates where the MSwithin repre-
sents the “error” or “within-run” mean square, and MSbetween

Figure 1 illustrates a control chart for individual values. represents the “between-run” mean square.
There are several different methods for calculating the upper
control limit (UCL) and lower control limit (LCL). One VarianceRep = MSwithin = 0.102
method involves the moving range, which is defined as the
absolute difference between two consecutive measurements
(xi – xI–1). These moving ranges are averaged ( MR ) and
used in the following formulas:

[NOTE—It is common practice to use a value of 0 for Vari-
anceRun when the calculated value is negative.] Estimates can
still be obtained with unequal replication, but the formulas
are more complex. Many statistical software packages can
easily handle unequal replication. Studying the relative mag-
nitude of the two variance components is important when
designing and interpreting a precision study. The insight
gained can be used to focus any ongoing method improve-
ment effort and, more important, it can be used to ensure
that methods are capable of supporting their intended uses.where x is the sample mean, and d2 is a constant com- By carefully defining what constitutes a result (i.e., reporta-monly used for this type of chart and is based on the num- ble value), one harnesses the power of averaging to achieveber of observations associated with the moving range calcu- virtually any desired precision. That is, by basing the report-lation. Where n = 2 (two consecutive measurements), as able value on an average across replicates and/or runs,here, d2 = 1.128. For the example in Figure 1, the MR was rather than on any single result, one can reduce the %RSD,1.7: and reduce it in a predictable fashion.

Table 2 shows the computed variance and %RSD of the
mean (i.e., of the reportable value) for different combina-
tions of number of runs and number of replicates per run
using the following formulas:

Other methods exist that are better able to detect small
shifts in the process mean, such as the cumulative sum (also
known as “CUSUM”) and exponentially weighted moving
average (“EWMA”).

For example, the Variance of the mean, Standard deviation of
the mean, and %RSD of a test involving two runs and three
replicates per each run are 0.592, 0.769, and 0.76% respec-
tively, as shown below.

Figure 1. Individual X or individual measurements control
chart for control samples. In this particular example, the

RSD = (0.769/100.96) × 100% = 0.76%mean for all the samples (x) is 102.0, the UCL is 106.5, and
the LCL is 97.5.

where 100.96 is the mean for all the data points in Table 1.
As illustrated in Table 2, increasing the number of runs from
one to two provides a more dramatic reduction in the varia-
bility of the reportable value than does increasing the num-APPENDIX B: PRECISION STUDY ber of replicates per run.

No distributional assumptions were made on the data inTable 1 displays data collected from a precision study. This Table 1, as the purpose of this Appendix is to illustrate thestudy consisted of five independent runs and, within each calculations involved in a precision study.run, results from three replicates were collected.
Performing an analysis of variance (ANOVA) on the data

in Table 1 leads to the ANOVA table (Table 1A). Because
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this example, with n = 10), and to declare X1 an outlier, theAPPENDIX C: EXAMPLES OF OUTLIER TESTS
following ratio, r11, is calculated by the formula:FOR ANALYTICAL DATA

Given the following set of 10 measurements: 100.0,
100.1, 100.3, 100.0, 99.7, 99.9, 100.2, 99.5, 100.0, and
95.7 (mean = 99.5, standard deviation = 1.369), are there
any outliers?

 A different ratio would be employed if the largest data
point was tested as an outlier. The r11 result is compared to

Generalized Extreme Studentized Deviate an r11, 0.05 value in a table of critical values. If r11 is greater
than r11, 0.05, then it is declared an outlier. For the above set(ESD) Test
of data, r11 = (99.5 – 95.7)/(100.2 – 95.7) = 0.84. This ratio
is greater than r11,0.05, which is 0.52979 at the 5% signifi-This is a modified version of the ESD Test that allows for
cance level for a two-sided Dixon’s Test. Sources for r11,0.05testing up to a previously specified number, r, of outliers
values are included in many statistical textbooks.5 from a normally distributed population. For the detection of

a single outlier (r = 1), the generalized ESD procedure is also Stage 2—Remove the smallest observation from the origi-
known as Grubb’s test. Grubb’s test is not recommended nal data set, so that n is now 9. The same r11 equation is
for the detection of multiple outliers. Let r equal 2, and n used, but a new critical r11,0.05 value for n = 9 is needed
equal 10. (r11, 0.05 = 0.56420). Now r11 = (99.7 – 99.5)/(100.2 – 99.5)

= 0.29, which is less than r11,0.05 and not significant at theStage 1 (n = 10)—Normalize each result by subtracting
5% level.the mean from each value and dividing this difference by

the standard deviation (see Table 3).4 Conclusion—Therefore, 95.7 is declared to be an outlier
Take the absolute value of these results, select the maxi- but 99.5 is not an outlier.

mum value (R1 = 2.805), and compare it to a previously
specified tabled critical value λ1 (2.290) based on the se-

Hampel’s Rulelected significance level (for example, 5%). The maximum
value is larger than the tabled value and is identified as
being inconsistent with the remaining data. Sources for λ- Step 1—The first step in applying Hampel’s Rule is to
values are included in many statistical textbooks. Caution normalize the data. However, instead of subtracting the
should be exercised when using any statistical table to en- mean from each data point and dividing the difference by
sure that the correct notations (i.e., level of acceptable er- the standard deviation, the median is subtracted from each
ror) are used when extracting table values. data value and the resulting differences are divided by MAD

(see below). The calculation of MAD is done in three stages.Stage 2 (n = 9)—Remove the observation corresponding
First, the median is subtracted from each data point. Next,to the maximum absolute normalized result from the origi-
the absolute values of the differences are obtained. Thesenal data set, so that n is now 9. Again, find the mean and
are called the absolute deviations. Finally, the median of thestandard deviation (Table 3, right two columns), normalize
absolute deviations is calculated and multiplied by the con-each value, and take the absolute value of these results. Find
stant 1.483 to obtain MAD.6the maximum of the absolute values of the 9 normalized

results (R2 = 1.905), and compare it to λ2 (2.215). The Step 2—The second step is to take the absolute value of
maximum value is not larger than the tabled value. the normalized data. Any such result that is greater than 3.5

is declared to be an outlier. Table 4 summarizes theConclusion—The result from the first stage, 95.7, is de-
calculations.clared to be an outlier, but the result from the second

The value of 95.7 is again identified as an outlier. Thisstage, 99.5, is not an outlier.
value can then be removed from the data set and Hampel’s
Rule re-applied to the remaining data. The resulting table is

Dixon-Type Tests displayed as Table 5. Similar to the previous examples, 99.5
is not considered an outlier.

Dixon’s Test can be one-sided or two-sided, depending
on an a priori decision as to whether outliers will be consid-

APPENDIX D: COMPARISON OF METHODS—ered on one side only. As with the ESD Test, Dixon’s Test
assumes that the data, in the absence of outliers, come from PRECISION
a single normal population. Following the strategy used for
the ESD Test, we proceed as if there were no a priori deci- The following example illustrates the calculation of a 90%
sion as to side, and so use a two-sided Dixon’s Test. From confidence interval for the ratio of (true) variances for the
examination of the example data, we see that it is the two purpose of comparing the precision of two methods. It is
smallest that are to be tested as outliers. Dixon provides for assumed that the underlying distribution of the sample
testing for two outliers simultaneously; however, these pro- measurements are well-characterized by normal distribu-
cedures are beyond the scope of this Appendix. The step- tions. For this example, assume the laboratory will accept
wise procedure discussed below is not an exact procedure the alternative method if its precision (as measured by the
for testing for the second outlier, because the result of the variance) is no more than four-fold greater than that of the
second test is conditional upon the first. And because the current method.
sample size is also reduced in the second stage, the end To determine the appropriate sample size for precision,
result is a procedure that usually lacks the sensitivity of Dix- one possible method involves a trial and error approach us-
on’s exact procedures. ing the following formula:

Stage 1 (n = 10)—The results are ordered on the basis of
their magnitude (i.e., Xn is the largest observation, Xn–1 is
the second largest, etc., and X1 is the smallest observation).
Dixon’s Test has different ratios based on the sample size (in

 5 The critical values for r in this example are taken from Reference 2 under4 The difference between each value and the mean is termed the residual. Appendix F, Outlier Tests.Other Studentized residual outlier tests exist where the residual, instead of 6 Assuming an underlying normal distribution, 1.483 is a constant used sobeing divided by the standard deviation, can be divided by the standard that the resulting MAD is a consistent estimator of the population standarddeviation times the square root of n –1 divided by n. deviation. This means that as the sample size gets larger, MAD gets closer to
the population standard deviation.
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where n is the smallest sample size required to give the sided, because only an increase in standard deviation of the
desired power, which is the likelihood of correctly claiming alternative method is of concern. Some care must be exer-
the alternative method has acceptable precision when in cised in using two-sided intervals in this way, as they must
fact the two methods have equal precision; α is the risk of have the property of equal tails—most common intervals
wrongly claiming the alternative method has acceptable have this property. Because the one-side upper confidence
precision; and the 4 is the allowed upper limit for an in- limit, 3.90, is less than the allowed limit, 4.0, the study has
crease in variance. F-values are found in commonly available demonstrated that the alternative method has acceptable
tables of critical values of the F-distribution. Fα,n–1,n–1 is the precision. If the same results had been obtained from a
upper α percentile of an F-distribution with n – 1 numerator study with a sample size of 15—as if 80% power had been
and n – 1 denominator degrees of freedom; that is, the chosen—the laboratory would not be able to conclude that
value exceeded with probability α. Suppose initially the lab- the alternative method had acceptable precision (upper con-
oratory guessed a sample size of 11 per method was neces- fidence limit of 4.47).
sary (10 numerator and denominator degrees of freedom);
the power calculation would be as follows:7

APPENDIX E: COMPARISON OF METHODS—
Pr [F > 1/4Fα,n-1,n-1] = Pr [F > 1/4F.05,10,10] DETERMINING THE LARGEST ACCEPTABLE

= Pr [F > (2.978/4)] = 0.6751 DIFFERENCE, δ, BETWEEN TWO METHODS
In this case the power was only 68%; that is, even if the This Appendix describes one approach to determining the
two methods had exactly equal variances, with only 11 difference, δ, between two methods (alternative-current), a
samples per method, there is only a 68% chance that the difference that, if achieved, still leads to the conclusion of
experiment will lead to data that permit a conclusion of no equivalence between the two methods. Without any other
more than a four-fold increase in variance. Most commonly, prior information to guide the laboratory in the choice of δ,
sample size is chosen to have at least 80% power, with it is a reasonable way to proceed. Sample size calculations
choices of 90% power or higher also used. To determine under various scenarios are discussed in this Appendix.
the appropriate sample size, various numbers can be tested
until a probability is found that exceeds the acceptable limit
(e.g., power >0.90). For example, the power determination Tolerance Interval Determination
for sample sizes of 12–20 are displayed in Table 6. In this
case, the initial guess at a sample size of 11 was not ade- Suppose the process mean and the standard deviation are
quate for comparing precision, but 15 samples per method both unknown, but a sample of size 50 produced a mean
would provide a large enough sample size if 80% power and standard deviation of 99.5 and 2.0, respectively. These
were desired, or 20 per method for 90% power. values were calculated using the last 50 results generated by

Typically the sample size for precision comparisons will be this specific method for a particular (control) sample. Given
larger than for accuracy comparisons. If the sample size for this information, the tolerance limits can be calculated by
precision is so large as to be impractical for the laboratory the following formula:
to conduct the study, there are some options. The first is to
reconsider the choice of an allowable increase in variance. x ± Ks
For larger allowable increases in variance, the required sam-
ple size for a fixed power will be smaller. Another alternative in which x is the mean; s is the standard deviation; and K is
is to plan an interim analysis at a smaller sample size, with based on the level of confidence, the proportion of results
the possibility of proceeding to a larger sample size if to be captured in the interval, and the sample size, n. Tables
needed. In this case, it is strongly advisable to seek profes- providing K values are available. In this example, the value
sional help from a statistician. of K required to enclose 95% of the population with 95%

Now, suppose the laboratory opts for 90% power and confidence for 50 samples is 2.382.8 The tolerance limits are
obtains the results presented in Table 7 based on the data calculated as follows:
generated from 20 independent runs per method.

99.5 ± 2.382 × 2.0
Ratio = alternative method variance/current method vari-

ance = 45.0/25.0 = 1.8 hence, the tolerance interval is (94.7, 104.3).

Comparison of the Tolerance Limits to theLower limit of confidence interval = ratio/F.05 = 1.8/2.168 =
0.83 Specification Limits

Assume the specification interval for this method is (90.0,
Upper limit of confidence interval = ratio/F.95 = 1.8/0.461 = 110.0) and the process mean and standard deviation have

3.90 not changed since this interval was established. The follow-
ing quantities can be defined: the lower specification limit

For this application, a 90% (two-sided) confidence interval (LSL) is 90.0, the upper specification limit (USL) is 110.0,
is used when a 5% one-sided test is sought. The test is one- the lower tolerance limit (LTL) is 94.7, and the upper toler-
7 This could be calculated using a computer spreadsheet. For example, in 8 There are existing tables of tolerance factors that give approximate values
Microsoft Excel the formula would be: FDIST((R/A)*FINV(alpha, n−1, n−1), and thus differ slightly from the values reported here.
n – 1, n – 1), where R is the ratio of variances at which to determine power
(e.g., R = 1, which was the value chosen in the power calculations provided
in Table 6) and A is the maximum ratio for acceptance (e.g., A = 4). Alpha is
the significance level, typically 0.05.
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ance limit (UTL) is 104.3. Calculate the acceptable differ- ues of 1.645 and 1.282, respectively), the sample size is
ence, (δ), in the following manner: approximated by the following formula:

A = LTL – LSL for LTL ≥ LSL

(A = 94.7 – 90.0 = 4.7);

B = USL – UTL for USL ≥ UTL

(B = 110.0 – 104.3 = 5.7); and
Thus, assuming each method has a population variance, σ2,
of 4.0, the number of samples, n, required to conclude with
80% probability that the two methods are equivalent (90%δ = minimum (A, B) = 4.7
confidence interval for the difference in the true means falls
between –4.7 and +4.7) when in fact they are identical (the
true mean difference is zero) is 4. Because the normal distri-
bution was used in the above formula, 4 is actually a lower
bound on the needed sample size. If feasible, one might
want to use a larger sample size. Values for z for commonFigure 2. A graph of the quantities calculated above.
confidence levels are presented in Table 8. The formula
above makes three assumptions: 1) the variance used in the

With this choice of δ, and assuming the two methods sample size calculation is based on a sufficiently large
have comparable precision, the confidence interval for the amount of prior data to be treated as known; 2) the prior
difference in means between the two methods (alternative- known variance will be used in the analysis of the new ex-
current) should fall within –4.7 and +4.7 to claim that no periment, or the sample size for the new experiment is suffi-
important difference exists between the two methods. ciently large so that the normal distribution is a good ap-

Quality control analytical laboratories sometimes deal with proximation to the t distribution; and 3) the laboratory is
99% tolerance limits, in which cases the interval will widen. confident that there is no actual difference in the means,
Using the previous example, the value of K required to en- the most optimistic case. It is not common for all three of
close 99% of the population with 99% confidence for 50 these assumptions to hold. The formula above should be
samples is 3.390. The tolerance limits are calculated as treated most often as an initial approximation. Deviations
follows: from the three assumptions will lead to a larger required

sample size. In general, we recommend seeking assistance
99.5 ± 3.390 × 2.0 from someone familiar with the necessary methods.

When a log transformation is required to achieve normal-
The resultant wider tolerance interval is (92.7, 106.3). Simi- ity, the sample size formula needs to be slightly adjusted as
larly, the new LTL of 92.7 and UTL of 106.3 would produce shown below. Instead of formulating the problem in terms
a smaller δ: of the population variance and the largest acceptable differ-

ence, δ, between the two methods, it now is formulated inA = LTL – LSL for LTL ≥ LSL terms of the population %RSD and the largest acceptable
proportional difference between the two methods.

(A = 92.7 – 90.0 = 2.7); 

B = USL – UTL for USL ≥ UTL 

where
(B = 110.0 – 106.3 = 3.7); and

δ = minimum (A, B) = 2.7

Though a manufacturer may choose any δ that serves ad-
equately in the determination of equivalence, the choice of
a larger δ, while yielding a smaller n, may risk a loss of
capacity for discriminating between methods. and ρ represents the largest acceptable proportional differ-

ence between the two methods ((alternative-current)/cur-
rent), and the population %RSDs are assumed known andSample Size equal.

Formulas are available that can be used for a specified δ,
under the assumption that the population variances are APPENDIX F: ADDITIONAL SOURCES OF
known and equal, to calculate the number of samples re- INFORMATIONquired to be tested per method, n. The level of confidence
and power must also be specified. [NOTE—Power refers to There may be a variety of statistical tests that can be usedthe probability of correctly concluding that two identical to evaluate any given set of data. This chapter presents sev-methods are equivalent.] For example, if δ = 4.7, and the eral tests for interpreting and managing analytical data, buttwo population variances are assumed to equal 4.0, then, many other similar tests could also be employed. The chap-for a 5% level test9 and 80% power (with associated z-val- ter simply illustrates the analysis of data using statistically
9 When testing equivalence, a 5% level test corresponds to a 90% confidence acceptable methods. As mentioned in the Introduction, spe-
interval. cific tests are presented for illustrative purposes, and USP

does not endorse any of these tests as the sole approach for
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many statistical textbooks. 1993.

Control Charts: 3. Kenkel, J., A Primer on Quality in the Analytical Labora-
1. Manual on Presentation of Data and Control Chart tory, Lewis Publishers, Boca Raton, FL, 2000.

Analysis, 6th ed., American Society for Testing and 4. Mandel, J., Evaluation and Control of Measurements,
Materials (ASTM), Philadelphia, 1996. Marcell Dekker, New York, 1991.

2. Grant, E.L., Leavenworth, R.S., Statistical Quality Con- 5. Melveger, A.J., “Statististics in the pharmaceutical
trol, 7th ed., McGraw-Hill, New York, 1996. analysis laboratory,” Analytical Chemistry in a GMP En-

3. Montgomery, D.C., Introduction to Statistical Quality vironment, Miller J.M., Crowther J.B., eds., John Wiley
Control, 3rd ed., John Wiley and Sons, New York, and Sons, New York, 2000.
1997. 6. Taylor, J.K., Statistical Techniques for Data Analysis,

4. Ott, E., Schilling, E., Neubauer, D., Process Quality Lewis Publishers, Boca Raton, FL, 1990.
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ed., McGraw-Hill, New York, 2000. New York, NY, 2002.
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Determination: ments, Lewis Publishers, Boca Raton, FL, 1987.
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FL, 1985. cal Chemists (AOAC), Arlington, VA, 1985.

2. Cohen, J., Statistical Power Analysis for the Behavioral 10. Youden, W.J., Steiner, E.H., Statistical Manual of the
Sciences, 2nd ed., Lawrence Erlbaum Associates, Hills- AOAC, AOAC, Arlington, VA, 1975.
dale, NJ, 1988. Nonparametric Statistics:

3. Diletti, E., Hauschke, D., Steinijans, V.W., “Sample 1. Conover, W.J., Practical Nonparametric Statistics, 3rd

size determination for bioequivalence assessment by ed., John Wiley and Sons, New York, 1999.
means of confidence intervals,” International Journal of 2. Gibbons, J.D., Chakraborti, S., Nonparametric Statisti-
Clinical Pharmacology, Therapy and Toxicology, 1991; cal Inference, 3rd ed., Marcel Dekker, New York, 1992.
29, 1–8. 3. Hollander, M., Wolfe, D., Nonparametric Statistical

4. Fleiss, J.L., The Design and Analysis of Clinical Experi- Methods, 2nd ed., John Wiley and Sons, NY, 1999.
ments, John Wiley and Sons, New York, 1986, pp. Outlier Tests:
369–375. 1. Barnett, V., Lewis, T., Outliers in Statistical Data, 3rd

5. Juran, J.A., Godfrey, B., Juran’s Quality Handbook, 5th ed., John Wiley and Sons, New York, 1994.
ed., McGraw-Hill, 1999, Section 44, Basic Statistical 2. Böhrer, Armin, “One-sided and Two-sided Critical Val-
Methods. ues for Dixon’s Outlier Test for Sample Sizes up to n

6. Lipsey, M.W., Design Sensitivity Statistical Power for Ex- = 30,” Economic Quality Control, Vol. 23 (2008), No.
perimental Research, Sage Publications, Newbury Park, 1, pp. 5–13.
CA, 1990. 3. Davies, L., Gather, U., “The identification of multiple

7. Montgomery, D.C., Design and Analysis of Experi- outliers,” Journal of the American Statistical Association
ments, John Wiley and Sons, New York, 1984. (with comments), 1993; 88:782–801.

8. Natrella, M.G., Experimental Statistics Handbook 91, 4. Dixon, W.J., “Processing data for outliers,” Biometrics
National Institute of Standards and Technology, Gai- 1953; 9(1):74–89.
thersburg, MD, 1991 (reprinting of original August 5. Grubbs, F.E., “Procedures for detecting outlying ob-
1963 text). servations in samples,” Technometrics 1969; 11:1–21.

9. Kraemer, H.C., Thiemann, S., How Many Subjects?: 6. Hampel, F.R., “The breakdown points of the mean
Statistical Power Analysis in Research, Sage Publica- combined with some rejection rules,” Technometrics,
tions, Newbury Park, CA, 1987. 1985; 27:95–107.

10. van Belle G., Martin, D.C., “Sample size as a function 7. Hoaglin, D.C., Mosteller, F., Tukey, J., eds., Under-
of coefficient of variation and ratio of means,” Ameri- standing Robust and Exploratory Data Analysis, John
can Statistician 1993; 47(3): 165–167. Wiley and Sons, New York, 1983.

11. Westlake, W.J., response to Kirkwood, T.B.L.: “Bioe- 8. Iglewicz B., Hoaglin, D.C., How to Detect and Handle
quivalence testing—a need to rethink,” Biometrics Outliers, American Society for Quality Control Quality
1981; 37:589–594. Press, Milwaukee, WI, 1993.

General Statistics Applied to Pharmaceutical Data: 9. Rosner, B., “Percentage points for a generalized ESD
1. Bolton, S., Pharmaceutical Statistics: Practical and many-outlier procedure,” Technometrics, 1983; 25:

Clinical Applications, 3rd ed., Marcel Dekker, New York, 165–172.
1997. 10. Standard E-178-94: Standard Practice for Dealing with

2. Bolton, S., “Statistics” Remington: The Science and Outlying Observations, American Society for Testing
Practice of Pharmacy, 20th ed., Gennaro, A.R., ed., and Materials (ASTM), West Conshohoken, PA, Sep-
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124–158. 11. Rorabacher, D.B., “Statistical Treatment for Rejections

3. Buncher, C.R., Tsay, J., Statistics in the Pharmaceutical of Deviant Values: Critical Values of Dixon’s “Q” Pa-
Industry, Marcel Dekker, New York, 1981. rameter and Related Subrange Ratios at the 95%

4. Natrella, M.G., Experimental Statistics Handbook 91, Confidence Level,” Analytical Chemistry, 1991; 63(2):
National Institute of Standards and Technology 139–146.
(NIST), Gaithersburg, MD, 1991 (reprinting of origi- Precision and Components of Variability:
nal August 1963 text). 1. Hicks, C.R., Turner, K.V., Fundamental Concepts in the

5. Zar, J., Biostatistical Analysis, 2nd ed., Prentice Hall, En- Design of Experiments, 5th ed., Oxford University Press,
glewood Cliffs, NJ, 1984. 1999 (section on Repeatability and Reproducibility of

General Statistics Applied to Analytical Laboratory a Measurement System).
Data: 2. Kirk, R.E., Experimental Design: Procedures for the Be-

1. Gardiner, W.P., Statistical Analysis Methods for Chem- havioral Sciences, Brooks/Cole, Belmont, CA, 1968,
ists, The Royal Society of Chemistry, London, En- pp. 61–63.
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35(4).
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4. Milliken, G.A., Johnson, D.E., Analysis of Messy Data, 8. Hauck, W. W., Koch, W., Abernethy, D., Williams, R.
Volume 1: Designed Experiments, Van Nostrand Rein- “Making Sense of Trueness, Precision, Accuracy, and
hold Company, New York, NY, 1984, pp. 19–23. Uncertainty,” Pharmacopeial Forum, 2008; 34(3).

5. Searle, S.R., Casella, G., McCulloch, C.E., Variance Tolerance Interval Determination:
Components, John Wiley and Sons, New York, 1992. 1. Hahn, G.J., Meeker, W.Q., Statistical Intervals: A Guide

6. Snedecor, G.W., Cochran, W.G., Statistical Methods, for Practitioners, John Wiley and Sons, New York,
8th ed., Iowa State University Press, Ames, IA, 1989. 1991.

7. Standard E-691-87: Practice for Conducting an In- 2. Odeh, R.E., “Tables of two-sided tolerance factors for
terlaboratory Study to Determine the Precision of a Test a normal distribution,” Communications in Statistics:
Method, ASTM, West Conshohoken, PA, 1994. Simulation and Computation, 1978; 7: 183–201.

Table 1. Data from a Precision Study

Run NumberReplicate
1 2 3 4 5 Number

1 100.70 99.46 99.96 101.80 101.91
2 101.05 99.37 100.17 102.16 102.00
3 101.15 99.59 101.01 102.44 101.67

Mean 100.97 99.47 100.38 102.13 101.86
Standard Deviation 0.236 0.111 0.556 0.321 0.171

% RSD1 0.234% 0.111% 0.554% 0.314% 0.167%
1 %RSD (percent relative standard deviation) = 100% × (standard deviation/mean)
 

Table 1A. Analysis of Variance Table for Data Presented in Table 1

Degrees of Freedom Sum of Squares Mean Squares1

Source of Variation (df) (SS) (MS) F =MSB/MSW

Between Runs 4 14.200 3.550 34.886
Within Runs 10 1.018 0.102

Total 14 15.217
1 The Mean Squares Between (MSB) = SSBetween/dfBetween and the Mean Squares Within (MSW) = SSWithin/dfWithin

 

Table 2. The Predicted Impact of the Test Plan (No. of Runs and No. of Replicates per Run) on the Precision of the Mean

No. of No. of Variance SD of the
Runs Replicates per Run of the Mean Mean % RSD1

1 1 1.251 1.118 1.11
1 2 1.200 1.095 1.09
1 3 1.183 1.088 1.08
2 1 0.625 0.791 0.78
2 2 0.600 0.775 0.77
2 3 0.592 0.769 0.76

1 A mean value of 100.96, based on the 15 data points presented in Table 1, was used (as the divisor) to compute the %RSD.

Table 3. Generalized ESD Test Results

n = 10 n = 9
Data Normalized Data Normalized

100.3 +0.555 100.3 +1.361
100.2 +0.482 100.2 +0.953
100.1 +0.409 100.1 +0.544
100.0 +0.336 100.0 +0.136
100.0 +0.336 100.0 +0.136
100.0 +0.336 100.0 +0.136
99.9 +0.263 99.9 –0.272
99.7 +0.117 99.7 –1.089
99.5 –0.029 99.5 –1.905
95.7 –2.805

Mean = 99.54 99.95
SD = 1.369 0.245
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Table 4. Test Results Using Hampel’s Rule

n = 10
Deviations
from the Absolute Absolute

Data Median Deviations Normalized
100.3 0.3 0.3 1.35
100.2 0.2 0.2 0.90
100.1 0.1 0.1 0.45
100 0 0 0
100 0 0 0
100 0 0 0
99.9 –0.1 0.1 0.45
99.7 –0.3 0.3 1.35
99.5 –0.5 0.5 2.25
95.7 –4.3 4.3 19.33

Median = 100 0.15
MAD = 0.22

Table 5. Test Results of Re-Applied Hampel’s Rule

n = 9
Deviations
from the Absolute Absolute

Data Median Deviations Normalized
100.3 0.3 0.3 2.02
100.2 0.2 0.2 1.35
100.1 0.1 0.1 0.67
100 0 0 0
100 0 0 0
100 0 0 0
99.9 –0.1 0.1 0.67
99.7 –0.3 0.3 2.02
99.5 –0.5 0.5 3.37

Median = 100 0.1
MAD = 0.14

Table 6. Power Determinations for Various Sample Sizes (Specific to the Example in Appendix D)

Sample Size Pr[F >1/4 F0.05, n-1, n-1]
12 0.7145
13 0.7495
14 0.7807
15 0.8083
16 0.8327
17 0.8543
18 0.8732
19 0.8899
20 0.9044

Table 7. Example of Measures of Variance for Independent Runs (Specific to the Example in Appendix D)

Variance Sample Degrees of
Method (standard deviation) Size Freedom

Alternative 45.0 (6.71) 20 19
Current 25.0 (5.00) 20 19

Table 8. Common Values for a Standard Normal Distribution

z-values
Confidence level One-sided (α) Two-sided (α/2)

99% 2.326 2.576
95% 1.645 1.960
90% 1.282 1.645
80% 0.842 1.282
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sive than that used in automated methods but is more la-〈1015〉 AUTOMATED bor-intensive. Of special concern are the methods involved
in validating the correct performance of an automated ap-RADIOCHEMICAL SYNTHESIS paratus. For a manual procedure, human intervention and
correction by inspection can nullify many procedural errors.APPARATUS In an automated system, effective feedback also can begin
during the synthesis. For example, radiation detectors can
monitor activity at various stages of radiosynthesis. Failure to
obtain the appropriate activity could activate an alarm sys-The preparation and quality control of diagnostic radio- tem that would lead to human intervention.pharmaceuticals labeled with the very short-lived positron-

Radiochemicals versus Radiopharmaceuticals—It is ap-emitting nuclides (e.g.,15O, 13N, 11C and 18F having half-lives
propriate to draw a distinction between a radiochemical andof 2, 10, 20, and 110 minutes, respectively), are subject to
a corresponding radiopharmaceutical. In research PET cen-constraints different from those applicable to therapeutic
ters, automated equipment is used to prepare labeled com-drugs: (1) Synthesis must be rapid, yet must be arranged to
pounds for animal experiments. These radiochemicals areprotect the chemist or pharmacist from excessive radiation
not regarded as radiopharmaceuticals if (1) they are notexposure. (2) Except to a limited extent for 18F, synthesis
prepared according to a validated process that provides amust occur at the time of use. (3) With the exception of 18F,
high degree of assurance that the preparation meets all es-each batch of radiopharmaceutical generally leads to only a
tablished requirements for quality and purity; and (2) havesingle administration.
not been certified by qualified personnel (licensed pharma-These factors raise the importance of quality control of
cists and approved physicians) in accordance with publishedthe final drug product relative to validation of the synthesis
Pharmacopeial methods for individual radiopharmaceuticals.process. Since with few exceptions every dose is individually

manufactured, ideally every dose should be subjected to Automated Equipment—The considerations in this
quality control tests for radiochemical purity and other key chapter apply to synthesis conducted by general purpose
aspects of quality before administration. Because quality robots and by special purpose apparatus. Both are auto-
testing of every batch is not possible, batches are selected mated devices used in the synthesis of radiochemicals. The
at regular intervals for examination to establish and com- exact method of synthesis device control is variable. Both
pletely characterize their radiopharmaceutical purity. This hard-wired and software-controlled synthesis devices fall
routine and thorough quality testing of selected batches under the general designation, and there is a spectrum
forms the basis of process validation, which is absolutely ranging from traditional manual equipment through semi-
essential for prospective assessment of batch quality and pu- automated devices to completely automatic devices.
rity when dealing with such extremely short-lived radiophar- Common Elements of Automated Synthesis Equipment—To
maceuticals. Since radiopharmaceuticals used in positron manipulate a chemical apparatus to effect the synthesis of a
emission tomography (PET) are administered intravenously radiochemical, control of parameters such as time, tempera-
or (for radioactive gases) by inhalation, batch-to-batch varia- ture, pressure, volume, and sequencing are needed. These
bility in bioavailability is not an issue. Furthermore, the very parameters can be monitored and constrained to fall within
small scale of radiopharmaceutical syntheses (almost always certain bounds.
less than 1 milligram and often in the microgram range) Equipment Quality Assurance—The goal of quality as-and the fact that patients generally receive only a single surance is to help ensure that the subsequent radiopharma-dose of radioactive drug minimize the likelihood of adminis- ceutical meets Pharmacopeial standards. Although the medi-tering harmful amounts of chemical impurities. These state- cal device good manufacturing practice regulations (21 CFRments are not intended to contest the need for quality con- 820) are not applicable, they may be helpful in developingtrol in the operation of automated synthesis equipment, but a quality assurance program. As a practical matter this in-to place the manufacture of positron-emitting radiopharma- volves documented measurement and control of all relevantceuticals in an appropriate perspective and to reemphasize physical parameters controlled by the synthesis apparatus.the overwhelming importance of prospective process valida-

Routine Quality Control Testing—Routine quality con-tion and finished product quality control.
trol testing of automated equipment implies periodic testingThe routine synthesis of radiopharmaceuticals can result in
of all parameters initially certified during the quality assur-unnecessarily high radiation doses to personnel. Automated
ance qualification. Depending on the criticality and the sta-radiochemical synthesis devices have been developed, partly
bility of the parameter setting, testing may be as often asto comply with the concept of reducing personnel radiation
daily. This process performance assessment must be aug-exposures to “as low as reasonably achievable” (ALARA).
mented by regular end product testing. For example, varia-These automated synthesis devices can be more efficient
tions in the temperature of an oil bath may be acceptable ifand precise than existing manual methods. Such automated
the radiochemical (end product) can be shown to meet allmethods are especially useful where a radiochemical synthe-
relevant testing criteria.sis requires repetitive, uniform manipulations on a daily

Reagent Audit Trail—Materials and reagents used forbasis.
the synthesis of radiopharmaceuticals should conform to es-The products from these automated radiosynthesis devices
tablished quality control specifications and tests. Proceduresmust meet the same quality assurance criteria as the prod-
for the testing, storage, and use of these materials shoulducts obtained by conventional manual syntheses. In the case
be established. In this context, a reagent is defined as anyof positron-emitting radiopharmaceuticals, these criteria will
chemical used in the procedure leading to the final radio-include many of the same determinations used for conven-
chemical product, whereas materials are defined as ancillarytional nuclear medicine radiopharmaceuticals, for example,
supplies (tubing, glassware, vials, etc.). For example, intests for sterility and bacterial endotoxins. Many of the same
some processes compressed nitrogen is used to move liquidlimitations apply. Typical analytical procedures such as spec-
reagents. In this case, both the nitrogen and the tubingtroscopy are not generally applicable because the small
should meet established specifications.amount of product is below the minimum detection level of

the method. In all cases, the applicable Pharmacopeial Documentation of Apparatus Parameters—Key synthe-
method is the conclusive arbiter (see Procedures under Tests sis variables should be identified, monitored, and docu-
and Assays in the General Notices). mented. These characteristics include meaningful physical,

Preparation of Fludeoxyglucose F 18 Injection and other chemical, electrical, and performance attributes. A method
positron-emitting radiopharmaceuticals can be adapted for specifying, testing, and documenting computer software
readily to automated synthesis. In general, the equipment and hardware is especially important for microprocessor-
required for the manual methods is simpler and less expen- and computer-controlled devices. This program should in-
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